HTML

HTML, which stands for HyperText Markup Language, is the predominant markup language for web pages. It provides a means to create structured documents by denoting structural semantics for text such as headings, paragraphs, lists etc as well as for links, quotes, and other items. It allows images and objects to be embedded and can be used to create interactive forms. It is written in the form of HTML elements consisting of “tags” surrounded by angle brackets within the web page content. It can include or can load scripts in languages such as JavaScript which affect the behavior of HTML processors like Web browsers; and Cascading Style Sheets (CSS) to define the appearance and layout of text and other material. The W3C, maintainer of both HTML and CSS standards, encourages the use of CSS over explicit presentational markup.

History

Origins

Tim Berners-Lee

In 1980, physicist Tim Berners-Lee, who was a contractor at CERN, proposed and prototyped ENQUIRE, a system for CERN researchers to use and share documents. In 1989, Berners-Lee wrote a memo proposing an Internet-based hypertext system. Berners-Lee specified HTML and wrote the browser and server software in the last part of 1990. In that year, Berners-Lee and CERN data systems engineer Robert Cailliau collaborated on a joint request for funding, but the project was not formally adopted by CERN. In his personal notes, from 1990 he lists”some of the many areas in which hypertext is used“, and puts an encyclopedia first .

First specifications

The first publicly available description of HTML was a document called HTML Tags, first mentioned on the Internet by Berners-Lee in late 1991. It describes 20 elements comprising the initial, relatively simple design of HTML. Except for the hyperlink tag, these were strongly influenced by SGMLguid, an in-house SGML based documentation format at CERN. Thirteen of these elements still exist in HTML 4.

HTML is a text and image formatting language used by web browsers to dynamically format web pages. Many of the text elements are found in the 1988 ISO technical report TR 9537 Techniques for using SGML, which in turn covers the features of early text formatting languages such as that used by the RUNOFF command developed in the early 1960s for the CTSS (Compatible Time-Sharing System) operating system: these formatting commands were derived from the commands used by typesetters to manually format documents. However the SGML concept of generalized markup is based on elements (nested annotated ranges with attributes) rather than merely point effects, and also the separation of structure and processing: HTML has been progressively moved in this direction with CSS.

Berners-Lee considered HTML to be an application of SGML, and it was formally defined as such by the Internet Engineering Task Force (IETF) with the mid-1993 publication of the first proposal for an HTML specification: “Hypertext Markup Language (HTML)” Internet-Draft

by Berners-Lee and Dan Connolly, which included an SGML Document Type Definition to define the grammar. The draft expired after six months, but was notable for its acknowledgment of the NCSA Mosaic browser’s custom tag for embedding in-line images, reflecting the IETF’s philosophy of basing standards on successful prototypes. Similarly, Dave Raggett’s competing Internet-Draft, “HTML+ (Hypertext Markup Format)”, from late 1993, suggested standardizing already-implemented features like tables and fill-out forms.

After the HTML and HTML+ drafts expired in early 1994, the IETF created an HTML Working Group, which in 1995 completed “HTML 2.0”, the first HTML specification intended to be treated as a standard against which future implementations should be based. Published as Request for Comments 1866, HTML 2.0 included ideas from the HTML and HTML+ drafts. The 2.0 designation was intended to distinguish the new edition from previous drafts.

Further development under the auspices of the IETF was stalled by competing interests. Since 1996, the HTML specifications have been maintained, with input from commercial software vendors, by the World Wide Web Consortium (W3C). However, in 2000, HTML also became an international standard (ISO/IEC 15445:2000). The last HTML specification published by the W3C is the HTML 4.01 Recommendation, published in late 1999. Its issues and errors were last acknowledged by errata published in 2001.

Version history of the standard

HTML

HTML version timeline

November 24, 1995

HTML 2.0 was published as IETF RFC 1866

. Supplemental RFCs added capabilities:

(form-based file upload)

(tables)

(client-side image maps)

(internationalization)

In June 2000, all of these were declared obsolete/historic by RFC 2854

.

January 1997

HTML 3.2 was published as a W3C Recommendation. It was the first version developed and standardized exclusively by the W3C, as the IETF had closed its HTML Working Group in September 1996.

HTML 3.2 dropped math formulas entirely, reconciled overlap among various proprietary extensions, and adopted most of Netscape’s visual markup tags. Netscape’s blink element and Microsoft’s marquee element were omitted due to a mutual agreement between the two companies. A markup for mathematical formulas similar to that in HTML wasn’t standardized until 14 months later in MathML.

December 1997

HTML 4.0 was published as a W3C Recommendation. It offers three variations:

  • Strict, in which deprecated elements are forbidden,
  • Transitional, in which deprecated elements are allowed,
  • Frameset, in which mostly only frame related elements are allowed;

Initially code-named “Cougar”, HTML 4.0 adopted many browser-specific element types and attributes, but at the same time sought to phase out Netscape’s visual markup features by marking them as deprecated in favor of style sheets. HTML 4 is an SGML application conforming to ISO 8879 – SGML.

April 1998

HTML 4.0 was reissued with minor edits without incrementing the version number.

December 1999

HTML 4.01 was published as a W3C Recommendation. It offers the same three variations as HTML 4.0, and its last errata

were published May 12, 2001.

May 2000

ISO/IEC 15445:2000[21][22] (“ISO HTML”, based on HTML 4.01 Strict) was published as an ISO/IEC international standard. In the ISO this standard falls in the domain of the ISO/IEC JTC1/SC34 (ISO/IEC Joint Technical Committee 1, Subcommittee 34 – Document description and processing languages).

As of mid-2008, HTML 4.01 and ISO/IEC 15445:2000 are the most recent versions of HTML. Development of the parallel, XML-based language XHTML occupied the W3C’s HTML Working Group through the early and mid-2000s.

This Is A Common Example Of HTML.

<html> <head> <title>Untitled</title> </head> <body>

</body> </html>

HTML draft version timeline

October 1991

HTML Tags, an informal CERN document listing twelve HTML tags, was first mentioned in public.

July 1992

First informal draft of the HTML DTD,

with six subsequent revisions

November 1992

HTML DTD 1.1 (the first with a version number, based on RCS revisions, which start with 1.1 rather than 1.0), an informal draft

June 1993

Hypertext Markup Language was published by the IETF IIIR Working Group as an Internet-Draft (a rough proposal for a standard). It was replaced by a second version

one month later, followed by six further drafts published by IETF itself

that finally led to HTML 2.0 in RFC1866

November 1993

HTML+ was published by the IETF as an Internet-Draft and was a competing proposal to the Hypertext Markup Language draft. It expired in May 1994.

April 1995 (authored March 1995)

HTML 3.0 was proposed as a standard to the IETF, but the proposal expired five months later without further action. It included many of the capabilities that were in Raggett’s HTML+ proposal, such as support for tables, text flow around figures, and the display of complex mathematical formulas.

W3C began development of its own Arena browser for testing support for HTML 3 and Cascading Style Sheets, but HTML 3.0 did not succeed for several reasons. The draft was considered very large at 150 pages and the pace of browser development, as well as the number of interested parties, had outstripped the resources of the IETF. Browser vendors, including Microsoft and Netscape at the time, chose to implement different subsets of HTML 3’s draft features as well as to introduce their own extensions to it. (See Browser wars) These included extensions to control stylistic aspects of documents, contrary to the “belief [of the academic engineering community] that such things as text color, background texture, font size and font face were definitely outside the scope of a language when their only intent was to specify how a document would be organized.” Dave Raggett, who has been a W3C Fellow for many years has commented for example, “To a certain extent, Microsoft built its business on the Web by extending HTML features.”

January 2008

HTML 5 was published as a Working Draft by the W3C.

Although its syntax closely resembles that of SGML, HTML 5 has abandoned any attempt to be an SGML application, and has explicitly defined its own “html” serialization, in addition to an alternative XML-based XHTML 5 serialization.

XHTML versions

XHTML is a separate language that began as a reformulation of HTML 4.01 using XML 1.0. It continues to be developed:

  • XHTML 1.0, published January 26, 2000 as a W3C Recommendation, later revised and republished August 1, 2002. It offers the same three variations as HTML 4.0 and 4.01, reformulated in XML, with minor restrictions.
  • XHTML 1.1, published May 31, 2001 as a W3C Recommendation. It is based on XHTML 1.0 Strict, but includes minor changes, can be customized, and is reformulated using modules from Modularization of XHTML, which was published April 10, 2001 as a W3C Recommendation.
  • XHTML 2.0, is still a W3C Working Draft. W3C announced that the XHTML 2 group will stop work by end of 2009. There will be no XHTML 2.0 standard. XHTML 2.0 is incompatible with XHTML 1.x and, therefore, would be more accurate to characterize as an XHTML-inspired new language than an update to XHTML 1.x.
  • XHTML 5, which is an update to XHTML 1.x, is being defined alongside HTML 5 in the HTML 5 draft.

Markup

HTML markup consists of several key components, including elements (and their attributes), character-based data types, and character references and entity references. Another important component is the document type declaration, which specifies the Document Type Definition. As of HTML 5, no Document Type Definition will need to be specified, and will only determine the layout mode

The Hello world program, a common computer program employed for comparing programming languages, scripting languages, and markup languages is made of 9 lines of code in HTML, albeit Newlines are optional:

<!doctype html>
<html>
  <head>
    <title>Hello HTML</title>
  </head>
  <body>
    <p>Hello World!</p>
  </body>
</html>

This Document Type Declaration is for HTML 5.

If the <!doctype html> declaration is not included, most browsers will render using “quirks mode.”

Elements

HTML documents are composed entirely of HTML elements that, in their most general form have three components: a pair of element tags with a “start tag” and “end tag”; some element attributes given to the element within the tags; and finally, all the actual, textual and graphical, information content that will be rendered on the display. An HTML element is everything between and including the tags. A tag is a keyword enclosed in angle brackets.

A common form of an HTML element is:

<tag>content to be rendered</tag>

The name of the HTML element is also the name of the tag. Note that the end tag’s name starts with a slash character, “/”.

The most general form of an HTML element is:

<tag attribute1="value1" attribute2="value2">content to be rendered</tag>

By not assigning attributes most start tags default their attribute values.

There are some basic types of tags: Heading of the HTML:<head>…</head>. Usually the title should be included in the head, for example:

<head>
<title>The title</title>
</head>

Paragraph Partition:

<p>Paragraph 1</p>  <p>Paragraph 2</p>

Newline:<br>. The difference between <br> and <p> is that ‘br’ breaks a line without altering the semantic structure of the page, whereas ‘p’ sections the page into paragraphs. Here is an example:

<code><p>This <br> is a paragraph <br> with <br> line breaks</p></code>

Annotation:

<!--..Explain!..-->

Annotations can help to understand the coding and do not display in the webpage.

There are several types of markup elements used in HTML.

  • Structural markup describes the purpose of text. For example, <h2>Golf</h2> establishes “Golf” as a second-level heading, which would be rendered in a browser in a manner similar to the “HTML markup” title at the start of this section. Structural markup does not denote any specific rendering, but most Web browsers have standardized default styles for element formatting. Text may be further styled with Cascading Style Sheets (CSS).
  • Presentational markup describes the appearance of the text, regardless of its function. For example <b>boldface</b> indicates that visual output devices should render “boldface” in bold text, but gives no indication what devices which are unable to do this (such as aural devices that read the text aloud) should do. In the case of both <b>bold</b> and <i>italic</i>, there are elements which usually have an equivalent visual rendering but are more semantic in nature, namely <strong>strong emphasis</strong> and <em>emphasis</em> respectively. It is easier to see how an aural user agent should interpret the latter two elements. However, they are not equivalent to their presentational counterparts: it would be undesirable for a screen-reader to emphasize the name of a book, for instance, but on a screen such a name would be italicized. Most presentational markup elements have become deprecated under the HTML 4.0 specification, in favor of CSS based style design.
  • Hypertext markup makes parts of a document into links to other documents. HTML up through version XHTML 1.1 requires the use of an anchor element to create a hyperlink in the flow of text: <a>Wikipedia</a>. In addition, the href attribute must be set to a valid URL. For example, the HTML markup, <a href="http://en.wikipedia.org/">Wikipedia</a>, will render the word “Wikipedia” as a hyperlink. An example to render an image as a hyperlink is: <a href="http://example.org"><img src="image.gif" alt="alternative text" width="50" height="50"></a>.

Attributes

Most of the attributes of an element are name-value pairs, separated by “=”, and written within the start tag of an element, after the element’s name. The value may be enclosed in single or double quotes, although values consisting of certain characters can be left unquoted in HTML (but not XHTML). Leaving attribute values unquoted is considered unsafe. In contrast with name-value pair attributes, there are some attributes that affect the element simply by their presence in the start tag of the element (like the ismap attribute for the img element).

Most elements can take any of several common attributes:

  • The id attribute provides a document-wide unique identifier for an element. This can be used by stylesheets to provide presentational properties, by browsers to focus attention on the specific element, or by scripts to alter the contents or presentation of an element. Appended to the URL of the page, it provides a globally-unique identifier for an element; typically a sub-section of the page. For example, the ID “Attributes” in http://en.wikipedia.org/wiki/HTML#Attributes
  • The class attribute provides a way of classifying similar elements. This can be used for semantic or presentation purposes. Semantically, for example, classes are used in microformats. Presentationally, for example, an HTML document might use the designation class="notation" to indicate that all elements with this class value are subordinate to the main text of the document. Such elements might be gathered together and presented as footnotes on a page instead of appearing in the place where they occur in the HTML source.
  • An author may use the style non-attributal codes presentational properties to a particular element. It is considered better practice to use an element’s id or class attributes to select the element with a stylesheet, though sometimes this can be too cumbersome for a simple and specific or ad hoc application of styled properties.
  • The title attribute is used to attach subtextual explanation to an element. In most browsers this attribute is displayed as what is often referred to as a tooltip.

The abbreviation element, abbr, can be used to demonstrate these various attributes:

<abbr id="anId" style="color:blue;" title="Hypertext Markup Language">HTML</abbr>

This example displays as HTML; in most browsers, pointing the cursor at the abbreviation should display the title text “Hypertext Markup Language.”

Most elements also take the language-related attributes lang and dir.

Character and entity references

As of version 4.0, HTML defines a set of 252 character entity references and a set of 1,114,050 numeric character references, both of which allow individual characters to be written via simple markup, rather than literally. A literal character and its markup counterpart are considered equivalent and are rendered identically.

The ability to “escape” characters in this way allows for the characters < and & (when written as &lt; and &amp;, respectively) to be interpreted as character data, rather than markup. For example, a literal < normally indicates the start of a tag, and & normally indicates the start of a character entity reference or numeric character reference; writing it as &amp; or &#x26; or &#38; allows & to be included in the content of elements or the values of attributes. The double-quote character ("), when used to quote an attribute value, must also be escaped as &quot; or &#x22; or &#34; when it appears within the attribute value itself. The single-quote character ('), when used to quote an attribute value, must also be escaped as &#x27; or &#39; (should NOT be escaped as &apos; except in XHTML documents) when it appears within the attribute value itself. However, since document authors often overlook the need to escape these characters, browsers tend to be very forgiving, treating them as markup only when subsequent text appears to confirm that intent.

Escaping also allows for characters that are not easily typed or that aren’t even available in the document’s character encoding to be represented within the element and attribute content. For example, the acute-accented e (é), a character typically found only on Western European keyboards, can be written in any HTML document as the entity reference &eacute; or as the numeric references &#233; or &#xE9;. The characters comprising those references (that is, the &, the ;, the letters in eacute, and so on) are available on all keyboards and are supported in all character encodings, whereas the literal é is not.

Data types

HTML defines several data types for element content, such as script data and stylesheet data, and a plethora of types for attribute values, including IDs, names, URIs, numbers, units of length, languages, media descriptors, colors, character encodings, dates and times, and so on. All of these data types are specializations of character data.

Document type declaration

HTML documents are required to start with a Document Type Declaration (informally, a “doctype”). In browsers, the function of the doctype is to indicate the rendering mode—particularly to avoid quirks mode.

The original purpose of the doctype was to enable parsing and validation of HTML documents by SGML tools based on the Document Type Definition (DTD). The DTD to which the DOCTYPE refers contains machine-readable grammar specifying the permitted and prohibited content for a document conforming to such a DTD. Browsers, on the other hand, do not implement HTML as an application of SGML and by consequence do not read the DTD. HTML 5 does not define a DTD, because of the technology’s inherent limitations, so in HTML 5 the doctype declaration, <!doctype html>, does not refer to a DTD.

An example of an HTML 4 doctype is

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

This declaration references the DTD for the Strict version of HTML 4.01, which does not include presentational elements like font, leaving formatting to Cascading Style Sheets and the span and div element. SGML-based validators read the DTD in order to properly parse the document and to perform validation. In modern browsers, this doctype activates standards mode as opposed to quirks mode.

In addition, HTML 4.01 provides Transitional and Frameset DTDs, as explained below.

Semantic HTML

Semantic HTML is a way of writing HTML that emphasizes the meaning of the encoded information over its presentation (look). HTML has included semantic markup from its inception, but has also included presentational markup such as <font>, <i> and <center> tags. There are also the semantically neutral span and div tags. Since the late 1990s when Cascading Style Sheets were beginning to work in most browsers, web authors have been encouraged to avoid the use of presentational HTML markup with a view to the separation of presentation and content.

In a 2001 discussion of the Semantic Web, Tim Berners-Lee and others gave examples of ways in which intelligent software ‘agents’ may one day automatically trawl the Web and find, filter and correlate previously unrelated, published facts for the benefit of human users.[40] Such agents are not commonplace even now, but some of the ideas of Web 2.0, mashups and price comparison websites may be coming close. The main difference between these web application hybrids and Berners-Lee’s semantic agents lies in the fact that the current aggregation and hybridisation of information is usually designed in by web developers, who already know the web locations and the API semantics of the specific data they wish to mash, compare and combine.

An important type of web agent that does trawl and read web pages automatically, without prior knowledge of what it might find, is the Web crawler or search-engine spider. These software agents are dependent on the semantic clarity of web pages they find as they use various techniques and algorithms to read and index millions of web pages a day and provide web users with search facilities without which the World Wide Web would be only a fraction of its current usefulness.

In order for search-engine spiders to be able to rate the significance of pieces of text they find in HTML documents, and also for those creating mashups and other hybrids, as well as for more automated agents as they are developed, the semantic structures that exist in HTML need to be widely and uniformly applied to bring out the meaning of published text.

Presentational markup tags are deprecated in current HTML and XHTML recommendations and are illegal in HTML 5.

Good semantic HTML also improves the accessibility of web documents (see also Web Content Accessibility Guidelines). For example, when a screen reader or audio browser can correctly ascertain the structure of a document, it will not waste the visually impaired user’s time by reading out repeated or irrelevant information when it has been marked up correctly.

Delivery

HTML documents can be delivered by the same means as any other computer file; however, they are most often delivered either by HTTP from a Web server or by e-mail.

HTTP

The World Wide Web is composed primarily of HTML documents transmitted from Web servers to Web browsers using the Hypertext Transfer Protocol (HTTP). However, HTTP is used to serve images, sound, and other content in addition to HTML. To allow the Web browser to know how to handle each document it receives, other information is transmitted along with the document. This meta data usually includes the MIME type (e.g. text/html or application/xhtml+xml) and the character encoding (see Character encoding in HTML).

In modern browsers, the MIME type that is sent with the HTML document may affect how the document is initially interpreted. A document sent with the XHTML MIME type is expected to be well-formed XML, and syntax errors may cause the browser to fail to render it. The same document sent with the HTML MIME type might be displayed successfully, since some browsers are more lenient with HTML.

The W3C recommendations state that XHTML 1.0 documents that follow guidelines set forth in the recommendation’s Appendix C may be labeled with either MIME Type. The current XHTML 1.1 Working Draft also states that XHTML 1.1 documents should be labeled with either MIME type.

HTML e-mail

Most graphical e-mail clients allow the use of a subset of HTML (often ill-defined) to provide formatting and semantic markup not available with plain text. This may include typographic information like coloured headings, emphasized and quoted text, inline images and diagrams. Many such clients include both a GUI editor for composing HTML e-mail messages and a rendering engine for displaying them. Use of HTML in e-mail is controversial because of compatibility issues, because it can help disguise phishing attacks, because it can confuse spam filters and because the message size is larger than plain text.

Naming conventions

The most common filename extension for files containing HTML is .html. A common abbreviation of this is .htm, which originated because some early operating systems and file systems, such as DOS and FAT, limited file extensions to three letters.

HTML Application

An HTML Application (HTA; file extension “.hta”) is a Microsoft Windows application that uses HTML and Dynamic HTML in a browser to provide the application’s graphical interface. A regular HTML file is confined to the security model of the web browser, communicating only to web servers and manipulating only webpage objects and site cookies. An HTA runs as a fully trusted application and therefore has more privileges, like creation/editing/removal of files and Windows Registry entries. Because they operate outside the browser’s security model, HTAs cannot be executed via HTTP, but must be downloaded (just like an EXE file) and executed from local file system.

Current variations

Since its inception, HTML and its associated protocols gained acceptance relatively quickly. However, no clear standards existed in the early years of the language. Though its creators originally conceived of HTML as a semantic language devoid of presentation details

, practical uses pushed many presentational elements and attributes into the language, driven largely by the various browser vendors. The latest standards surrounding HTML reflect efforts to overcome the sometimes chaotic development of the language

and to create a rational foundation for building both meaningful and well-presented documents. To return HTML to its role as a semantic language, the W3C has developed style languages such as CSS and XSL to shoulder the burden of presentation. In conjunction, the HTML specification has slowly reined in the presentational elements.

There are two axes differentiating various variations of HTML as currently specified: SGML-based HTML versus XML-based HTML (referred to as XHTML) on one axis, and strict versus transitional (loose) versus frameset on the other axis.

SGML-based versus XML-based HTML

One difference in the latest HTML specifications lies in the distinction between the SGML-based specification and the XML-based specification. The XML-based specification is usually called XHTML to distinguish it clearly from the more traditional definition; however, the root element name continues to be ‘html’ even in the XHTML-specified HTML. The W3C intended XHTML 1.0 to be identical to HTML 4.01 except where limitations of XML over the more complex SGML require workarounds. Because XHTML and HTML are closely related, they are sometimes documented in parallel. In such circumstances, some authors conflate the two names as (X)HTML or X(HTML).

Like HTML 4.01, XHTML 1.0 has three sub-specifications: strict, loose, and frameset.

Aside from the different opening declarations for a document, the differences between an HTML 4.01 and XHTML 1.0 document—in each of the corresponding DTDs—are largely syntactic. The underlying syntax of HTML allows many shortcuts that XHTML does not, such as elements with optional opening or closing tags, and even EMPTY elements which must not have an end tag. By contrast, XHTML requires all elements to have an opening tag or a closing tag. XHTML, however, also introduces a new shortcut: an XHTML tag may be opened and closed within the same tag, by including a slash before the end of the tag like this: <br/>. The introduction of this shorthand, which is not used in the SGML declaration for HTML 4.01, may confuse earlier software unfamiliar with this new convention. A fix for this is to include a space before closing the tag, as such: <br />.

To understand the subtle differences between HTML and XHTML, consider the transformation of a valid and well-formed XHTML 1.0 document that adheres to Appendix C (see below) into a valid HTML 4.01 document. To make this translation requires the following steps:

  1. The language for an element should be specified with a lang attribute rather than the XHTML xml:lang attribute. XHTML uses XML’s built in language-defining functionality attribute.
  2. Remove the XML namespace (xmlns=URI). HTML has no facilities for namespaces.
  3. Change the document type declaration from XHTML 1.0 to HTML 4.01. (see DTD section for further explanation).
  4. If present, remove the XML declaration. (Typically this is: <?xml version="1.0" encoding="utf-8"?>).
  5. Ensure that the document’s MIME type is set to text/html. For both HTML and XHTML, this comes from the HTTP Content-Type header sent by the server.
  6. Change the XML empty-element syntax to an HTML style empty element (<br/> to <br>).

Those are the main changes necessary to translate a document from XHTML 1.0 to HTML 4.01. To translate from HTML to XHTML would also require the addition of any omitted opening or closing tags. Whether coding in HTML or XHTML it may just be best to always include the optional tags within an HTML document rather than remembering which tags can be omitted.

A well-formed XHTML document adheres to all the syntax requirements of XML. A valid document adheres to the content specification for XHTML, which describes the document structure.

The W3C recommends several conventions to ensure an easy migration between HTML and XHTML (see HTML Compatibility Guidelines

). The following steps can be applied to XHTML 1.0 documents only:

  • Include both xml:lang and lang attributes on any elements assigning language.
  • Use the empty-element syntax only for elements specified as empty in HTML.
  • Include an extra space in empty-element tags: for example <br /> instead of <br/>.
  • Include explicit close tags for elements that permit content but are left empty (for example, <div></div>, not <div />).
  • Omit the XML declaration.

By carefully following the W3C’s compatibility guidelines, a user agent should be able to interpret the document equally as HTML or XHTML. For documents that are XHTML 1.0 and have been made compatible in this way, the W3C permits them to be served either as HTML (with a text/html MIME type), or as XHTML (with an application/xhtml+xml or application/xml MIME type). When delivered as XHTML, browsers should use an XML parser, which adheres strictly to the XML specifications for parsing the document’s contents.

Transitional versus strict

HTML 4 defined three different versions of the language: Strict, Transitional (once called Loose), and Frameset. The Strict version is intended for new documents and is considered best practice, while the Transitional and Frameset versions were developed to make it easier to transition documents that conformed to older HTML specification or didn’t conform to any specification to a version of HTML 4. The Transitional and Frameset versions allow for presentational markup, which is omitted in the Strict version. Instead, cascading style sheets are encouraged to improve the presentation of HTML documents.

Because XHTML 1 only defines an XML syntax for the language defined by HTML 4, the same differences apply to XHTML 1 as well.

The Transitional version allows the following parts of the vocabulary, which are not included in the Strict version:

  • A looser content model
    • Inline elements and plain text are allowed directly in: body, blockquote, form, noscript and noframes
  • Presentation related elements
    • underline (u)
    • strike-through (s)
    • center
    • font
    • basefont
  • Presentation related attributes
    • background and bgcolor attributes for body element.
    • align attribute on div, form, paragraph (p), and heading (h1h6) elements
    • align, noshade, size, and width attributes on hr element
    • align, border, vspace, and hspace attributes on img and object elements
    • align attribute on legend and caption elements
    • align and bgcolor on table element
    • nowrap, bgcolor, width, height on td and th elements
    • bgcolor attribute on tr element
    • clear attribute on br element
    • compact attribute on dl, dir and menu elements
    • type, compact, and start attributes on ol and ul elements
    • type and value attributes on li element
    • width attribute on pre element
  • Additional elements in Transitional specification
    • menu list (no substitute, though unordered list is recommended)
    • dir list (no substitute, though unordered list is recommended)
    • isindex (element requires server-side support and is typically added to documents server-side, form and input elements can be used as a substitute)
    • applet (deprecated in favor of object element)
  • The language attribute on script element (redundant with the type attribute).
  • Frame related entities
    • iframe
    • noframes
    • target attribute on anchor, client-side image-map (imagemap), link, form, and base elements

The Frameset version includes everything in the Transitional version, as well as the frameset element (used instead of body) and the frame element.

Frameset versus transitional

In addition to the above transitional differences, the frameset specifications (whether XHTML 1.0 or HTML 4.01) specifies a different content model, with frameset replacing body, containing frame elements, and optionally noframes, with a body.

Summary of specification versions

As this list demonstrates, the loose versions of the specification are maintained for legacy support. However, contrary to popular misconceptions, the move to XHTML does not imply a removal of this legacy support. Rather the X in XML stands for extensible and the W3C is modularizing the entire specification and opening it up to independent extensions. The primary achievement in the move from XHTML 1.0 to XHTML 1.1 is the modularization of the entire specification. The strict version of HTML is deployed in XHTML 1.1 through a set of modular extensions to the base XHTML 1.1 specification. Likewise someone looking for the loose (transitional) or frameset specifications will find similar extended XHTML 1.1 support (much of it is contained in the legacy or frame modules). The modularization also allows for separate features to develop on their own timetable. So for example XHTML 1.1 will allow quicker migration to emerging XML standards such as MathML (a presentational and semantic math language based on XML) and XForms—a new highly advanced web-form technology to replace the existing HTML forms.

In summary, the HTML 4.01 specification primarily reined in all the various HTML implementations into a single clear written specification based on SGML. XHTML 1.0, ported this specification, as is, to the new XML defined specification. Next, XHTML 1.1 takes advantage of the extensible nature of XML and modularizes the whole specification. XHTML 2.0 will be the first step in adding new features to the specification in a standards-body-based approach.

Hypertext features not in HTML

HTML lacks some of the features found in earlier hypertext systems, such as typed links, source tracking, fat links, and more. Even some hypertext features that were in early versions of HTML have been ignored by most popular web browsers until recently, such as the link element and in-browser Web page editing.

Sometimes Web services or browser manufacturers remedy these shortcomings. For instance, wikis and content management systems allow surfers to edit the Web pages they visit.

WYSIWYG Editors

There are some WYSIWYG editors in which the user lays out everything as it is to appear in the HTML document using a graphical user interface, and the editor renders this as an HTML document, no longer requiring the author to have extensive knowledge of HTML.

Web page editing is clearly dominated by the WYSIWYG editing model. But, this model has been criticized, primarily because of the low quality of the generated code, and there are voices advocating a change to the WYSIWYM model.

WYSIWYG editors remains a controversial topic because of their perceived flaws such as:

  • Relying mainly on layout as opposed to meaning, often using markup that does not convey the intended meaning but simply copies the layout.
  • Often producing extremely verbose and redundant code that fails to make use of the cascading nature of HTML and CSS.
  • Often producing ingrammatal markup often called tag soup.
  • As a great deal of information of HTML documents is not in the layout, the model has been criticized for its ‘what you see is all you get’-nature.

Nevertheless, since WYSIWYG editors offer convenience over hand-coded pages as well as not requiring the author to know the finer details of HTML, they still dominate web authoring.

10 thoughts on “HTML

  1. Recliners says:

    I’ll gear this review to 2 types of people: current Zune owners who are considering an upgrade, and people trying to decide between a Zune and an iPod. (There are other players worth considering out there, like the Sony Walkman X, but I hope this gives you enough info to make an informed decision of the Zune vs players other than the iPod line as well.)

  2. Lionel Lasserre says:

    Thanks for taking the time to discuss this, I feel strongly about it and love learning more on this topic. If possible, as you gain expertise, would you mind updating your blog with more information? It is extremely helpful for me.

  3. Go Daddy Hosting Coupons says:

    Godaddy.com coupon codes update. Many of the recurring Godaddy coupons are not valid. Here are the latest coupons that are just released. These promo codes will give you a discount at Godaddy. $7.49 Domain names and renewals – Use Go Daddy coupon codes ZINE10, GOO3, or OK9. 25% discount on orders of $100+ – Use Godaddy coupon code OK25. 30% Discount when you buy any com domain – Use Go Daddy coupon OK30. $12.99 SSL Certificates – Use Godaddy coupon codes GOOSSL, OKSSL, or ZINESSL. Hosting Promo Code – 20% Hosting Discount – Use Go Daddy coupons OK20H, ZINE20H1 or GOO20H. 10% off any size order – Use Godaddy.com promo codes OK7, GOO1 or ZINE8. $5 Off $30 or More – Use Godaddy.com promo codes GOO2 or ZINE9. 20% Off Any order of $50 or more – Use Go Daddy coupon code OK8.

Leave a Reply